Making Pairwise Binary Graphical Models Attractive

نویسندگان

  • Nicholas Ruozzi
  • Tony Jebara
چکیده

Computing the partition function (i.e., the normalizing constant) of a given pairwise binary graphical model is NP-hard in general. As a result, the partition function is typically estimated by approximate inference algorithms such as belief propagation (BP) and tree-reweighted belief propagation (TRBP). The former provides reasonable estimates in practice but has convergence issues. The later has better convergence properties but typically provides poorer estimates. In this work, we propose a novel scheme that has better convergence properties than BP and provably provides better partition function estimates in many instances than TRBP. In particular, given an arbitrary pairwise binary graphical model, we construct a specific “attractive” 2-cover. We explore the properties of this special cover and show that it can be used to construct an algorithm with the desired properties.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Bethe Partition Function of Log-supermodular Graphical Models

Sudderth, Wainwright, and Willsky conjectured that the Bethe approximation corresponding to any fixed point of the belief propagation algorithm over an attractive, pairwise binary graphical model provides a lower bound on the true partition function. In this work, we resolve this conjecture in the affirmative by demonstrating that, for any graphical model with binary variables whose potential f...

متن کامل

Rapid Mixing Swendsen-Wang Sampler for Stochastic Partitioned Attractive Models

The Gibbs sampler is a particularly popular Markov chain used for learning and inference problems in Graphical Models (GMs). These tasks are computationally intractable in general, and the Gibbs sampler often suffers from slow mixing. In this paper, we study the SwendsenWang dynamics which is a more sophisticated Markov chain designed to overcome bottlenecks that impede the Gibbs sampler. We pr...

متن کامل

Bethe and Related Pairwise Entropy Approximations

For undirected graphical models, belief propagation often performs remarkably well for approximate marginal inference, and may be viewed as a heuristic to minimize the Bethe free energy. Focusing on binary pairwise models, we demonstrate that several recent results on the Bethe approximation may be generalized to a broad family of related pairwise free energy approximations with arbitrary count...

متن کامل

Uprooting and Rerooting Higher-Order Graphical Models

The idea of uprooting and rerooting graphical models was introduced specifically for binary pairwise models by Weller [19] as a way to transform a model to any of a whole equivalence class of related models, such that inference on any one model yields inference results for all others. This is very helpful since inference, or relevant bounds, may be much easier to obtain or more accurate for som...

متن کامل

Which graphical models are difficult to learn?

We consider the problem of learning the structure of Ising models (pairwise binary Markov random fields) from i.i.d. samples. While several methods have been proposed to accomplish this task, their relative merits and limitations remain somewhat obscure. By analyzing a number of concrete examples, we show that low-complexity algorithms systematically fail when the Markov random field develops l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014